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Abstract. We present a hierarchy of generalized Abelian Higgs models on E&, descended 
from the hierarchy of generalized Yang-Mills (GYM) systems on h,, where the p =  I 
member is the usual Abelian Higgs model. We also study the vortex number n radial self- 
dual solutions numerically. 

1. Introduction 

The main purpose of the present work is to present a hierarchy of Abelian Higgs models 
generalizing the normal Abelian Higgs model [ I ,  21. The qualitative features of the 
vortices in these models are the same as those of the vortices of the usual~Abelian Higgs 
model. Of physical interest is the quantitative difference between vortices of different 
members of the hierarchy. Our work therefore supplies models which can accommodate 
vortices, like those in superconductors, with qualitatively the same but quantitatively 
different features. 

The advantage of our construction is that the models are obtained by descent from 
higherdimensional gauge field models which are endowed with simple geometric and 
topological properties. As a result the descendant models are guaranteed to have topo- 
logically stable solutions, whose vortex number is related to the magnetic flux just like 
that of the Abelian Higgs model. This is in contrast to a different generalization due 
to Lohe [3]. 

The Abelian Higgs model [I] on R2 has played an important role in physics in recent 
years, in particular as it allows for Nielson-Olesen [2] vortices in (2 + I )  dimensions. The 
Lagrangian density on R2 is given by 

?, 
2 9 ( ” = F ; +  21DiqI2+- (‘7’- &)’ (1.1) 

where F,/=aiAj-ajA,, and the Abelian gauge potential Ai interacts minimally wjth the 
complex scalar Higgs field q via Diq=airp+iA,q. The Higgs field, whose modulus is 6, 
interacts with itself, via a symmetry-breaking potential. The field 4 asymptotically tends 
to ‘7 for the topologically stable vortex solutions [l]. 

1 On leave from St Partrick‘s College, Maynooth, Ireland. 
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The topological stability follows from the inequalities 

[Ky- &Eu(+ I ql2)I2>O 

IDjq-isvDiq12>0 

which can be rewritten as 

(1.2n) 

(1.26) 

F ~ + 6 ( ~ 2 - @ 2 ) 2 ~ ~ 2 ~ ~ i A ~ - ~ ~ @ 2 F ~  . ( 1 . 3 ~ )  

21 DiqI2> -2i&&(qDiq*) + E ~ @ ~ K ~ .  (1.36) 

It follows from ( 1 . 3 ~ )  and (1.36), then, that 

9(’) > ~ E & ( $ A ~ -  i9Djq*) (1.4) 

prouided that D O .  
Thus, the volume integral of 9(” is bounded from below by the ‘surface’ integral 

of the right-hand side of (1.4), where only the first term contributes, and is the topologi- 
cal charge. The second term on the right-hand side of (1.4) does not contribute to the 
‘surface’ integral because Dip, decays like Fv asymptotically, according to the finite 
action conditions, which is too fast, given that Ai decays like 1 / r .  In the special case 
when A= 1, the inequality (1.3) can be saturated [ I ,  41, and the action integral becomes 
proportional to the vortex number 

2 n  (1.5) 

which is just the non-vanishing contribution of the integral of the right-hand side of 
(1.4). In this case, the inequalities ( 1 . 2 4  and (1.26) become the Bogomol’nyi equalities 
[4], or the self-duality equations, the general solutions to which are discussed in [ I ] .  
The stress tensor for these self-dual multivortex solutions [I]  vanishes identically, and 
the latter therefore represent non-interacting vortices in the plane. 

In this paper, we present a hierarchy of Abelian Higgs models on R2, generalizing 
the model described by (1 .I), in complete analogy to the hierarchy of the scale-invariant 
generalized Yang-Mills (GYM) models 151, o i s - h i s  the usual YM model. To this end, 
we recall the scale-invariant GYM models on 4p dimensions 

92JM= tr F(2p)” ( 1 . 6 ~ )  

F(2p) = F A  F A .  . . A F, p times (1.66) 

where the p = 1 case is the usual YM system. 
To explain this analogy, we start by recalling [ I ,  61 that the usual Abelian Higgs 

model on R2, with the coupling constant A= 1, is the residual subsystem of the SU(2)  
YM model on R2 x S’, after the latter is subjected to dimensional reduction [ 7 ] .  The 
topological density on the right-hand side of (1.4) is then the residual density resulting 
from the dimensional reduction [SI of the second Chern-Pontryagin ( c . ~ )  density 
tr F A  F on R2x S2. (The second c-P charge supplies the topological lower bound on 
the YM action.) Similarly, subjecting the scale-invariant, chiral SO(4p) GYM action 
( 1 . 6 ~ )  on R Z X X ‘ ~ - ~  to dimensional reduction [7,8], we find thepth member of the 
hierarchy of generalized Abelian Higgs models. For p 2 2 ,  and allowing for a coupling 
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constant I (20) as in (l.l), the Lagrangian on R2 is 

= ( q'- ~2)z(p-21(4p(2p- 1)(2p-2)!'[(q2- &)Ey- i(p - 1)D,pD,p*I2 

+ 2p( q2- + z ) 2 ~ ~ i p ~ z + w  (2p - I ) ~ (  q2 - 47"). (1.7) 

We see that the coefficient of the highest power of qz in (1.7) is in fact nothing other 
than the usual Abelian Higgs model. The hierarchy (1.7) therefore consists of the 
usual Abelian Higgs model augmented by Skyrme-like terms. Note that for p >  I the 
Lagrangians (1.7) differ only in the power of the overall factor (~'-4') and in the 
coefficients of the different terms. In this sense there are only two qualitatively different 
members of this hierarchy, namely that forp= 1 and those for p >  1. 

The discussion of formulae like (1.7) and the derivation of the corresponding topo- 
logical charge densities is the subject of the next section. The topological charge provid- 
ing the lower bound for the action of (1.7) is the residual charge arising from the 
dimensional reduction [SI of the 2pth c-P charge on R2 x S"-'. This will be presented 
below in section 2. In section 3, the self-duality equations are studied numerically for 
the vortex number n radial field configurations corresponding to the I =  1 case. Section 
4 contains our summary and conclusion. 

2. The hierarchy of models 

The derivation of (1.7) proceeds straightforwardly, employing the dimensional reduc- 
tion formalism developed in [8]. The latter is based on the calculus of symmetric gauge 
fields formulated by Schwartz et 01 [9]. Since examples of such residual Lagrangians 
are treated in detail in [lo] and [ 111 already, here we just quote our results. Subjecting 
the pth member of the GYM hierarchy (1.60) on R2 x S"-' to dimensional reduction, 
we find (1.7), with I=1. In general we can consider 121 ( O O ) ,  in which cases the 
Bogomol'nyi inequalities to be given below cannot be saturated. 

The main task to be addressed in this section is to show that the action of (1.7) is 
bounded from below by a topologically non-trivial charge. From the results of [8], we 
know that this must be the case. This is not a surprising result, since the action of the 
GYM system (1.6~) is bounded from below by the 2pth CP charge, and both (1.7) and 
the quantity bounding it from below are descended from the former densities, respec- 
tively, by a strict imposition of symmetries [8, 91. 

Technically, our objective can be best achieved by exploiting~ the Bogomol'nyi 
bounds for each p.  These in turn are derived by dimensional reduction of the (gen- 
eralized) self-duality equations pertaining to (1.6), which saturate the inequality 

tr[F(2p) - *F(2P)]2,0. (2.1) 

It turns out that subjecting (2.1) to dimensional reduction over RZ x SAP-' always gives 
rise to two real inequalities, namely 

(2.20) 

( q2-  $z)z'p- ')IDip-i&,.D,p12>0. (2.2h) 

The first inequality of (2.2) is the square of a real quantity, while the second is the 
modulus square of a complex quantity. Thus, saturating (2.24 and (2.2b) would lead 

(q2-  $2)2'p-'){[(q2- $2)Fv-i(p- l)DIipD,,p*] -(2p- 1)cv (q2-4  2 2 2  ) } a0 
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to the Bogomol’nyi equations 

( q 2 -  &)‘P-2){[(q2-42)Fg-i(p- l)DI,qDilp*]- (2p -  1)sAq’- q5*)2} = O  (2.3~) 

(q2-  42)(p-’)(D#-iEuDjp) =o. (2.36) 

We shall be concerned with the solutions of ( 2 . 3 ~ )  and (2.3b) in the next section. 
Here, we proceed to show that (1.7) is bounded from below by virtue of the inequalities 
( 2 . 2 4  and (2.26). For simplicity of presentation, we shall carry out the demonstration 
of this topological lower bound for the p = 2 and p = 3 members of the hierarchy only. 
We do not expect that this restriction sacrifices any generality since there are only two 
qualitatively different members of the hierarchy, namelyp= I andp> 1. Both the action 
density (1.7) and the Bogomol’nyi equation (2.3) describe the usual Abelian Higgs 
model forp= 1, the first member of the hierarchy. Forp=2, the U(1) kinetic term and 
the Higgs self-interaction potential are appreciably different from the p =  1 case. For 
p a  3 ,  these formulae differ from those of the p = 2  case only through the multiplicative 
factor ( q2 - 42)2(p-2) and ( q2 - 42)(p-2) in (1.7) and ( 2 . 3 ~ )  respectively. 

From the inequalities ( 2 . 2 ~ )  and ( 2 2 )  we see that the linear combination of the 
square terms yields the action density (2.7), which is bounded from below by the 
corresponding linear combination of the cross-terms. The latter must be shown to be 
total divergences. We list these two cross-terms, pip) and pip), for p = 2  and p = 3 ,  
respectively: 

( 2 . 4 4  
(2.46) 

p!2’=6~i , [qsFf-  342(q4-  q2b2+ i44)Fi,-2i(q2- 42)2DjpDjp*] 

pi2) = ku( q2 - 42)2D,pDj9* 

for p = 2, and 

pi3)= lO~g[q”’Fu- 54*(q8-2q6&+2q4$4 - q2rj6 

+$$‘)fij- 4 ( q 2  - @z)4iDjpD,p*] ( 2 . 5 ~ )  

(2.56) pi3) = icu( q2 - 42)4DtqD,q* 

for p = 3. Note that the second type of cross-terms pip) occur in the first, pip’. 

p52’=i&..a.[(q4-q242+.? ‘I‘ 3 4  4 )PDj$I - fEu42(q4-  q 2 @ +  i44)Fi, ( 2 . 6 ~ )  

We can now verify the following identities: 

pi3) =i&[( q8 -2q6& +2q4$4-  q2+6+;@)p~jp*] 

- f E&( q8 -2q642+2q444- q246+f4s) F ~ .  (2.66) 

Finally, choosing the linear combinations (p!”+ 24~:” )  and (p13’+50p53)), respectively, 
we find that the action density @) for p = 2  and 3 is bounded from below by the 
following topological densities: 

aia!2)= i2ajcb[q6~,-3i(q4- q2b2+ fb4)pD,p*] ( 2 . 7 ~ )  

a4-2:” = 2oaj~g[ q”A,-%i( q8 - 2q6bZ+ 2 ~ ~ 4 ~  - q246 + f 4 s ) p ~ j q * ] .  (2.76) 

Note the similarity of ( 2 . 7 ~ )  and (2.76) with the topological density on the right- 
hand side of (1.4), for p=l .  In all these cases, the only terms that contribute to the 
surface integrals are the first terms, for reasons explained in section 1. Thus we see that 
for p =  1 , 2 , 3  the topological charge for the hierarchy of these models is always the 
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vortex number (1.5). It is clear that, starting from (2.2~)  and (2.2b), results similar to 
(2.7~) and (2.76) can be derived straightforwardly for arbitraryp. 

3. Radial selfdual solutioos 

We restrict our considerations of the self-duality equations here to the radial excitation 
field configurations 

(3.1~) 

p= qg(r) e-in’ (3.lb) 

with vortex number n. We shall study the solutions of the self-dual equations (2.3~) 
and (2.3b). Using the ansatz (3.1), this hierarchy of Bogomol’nyi equations (2.3~) and 
(2.36) reduces to the following hierarchy of ordinary nonlinear differential equations: 

d u 2  
dr F 

( I  -2) -=- ( p -  1)a*$-r(2p- I)(I -2)2 (3.2~) 

Since we are unable to integrate (3.2~) and (3.26) explicitly, we cannot find the full 
solutions in closed form. Instead we find the behaviour of the solutions for r<< 1 and 
r>>l, with parameters to be determined numerically by the shooting method. The full 
solutions-are studied numerically and, for p = 2  and n =  1,2, the functions are plotted. 

For large r, we want solutions with asymptotic behaviour a(p)+O and g(r)+l  as 
r-co. If 8=[1 -g(r)]<<l, (3.2) are approximated by 

d8  
dr 

a = - - -  (3.34 

(3.36) 

These equations have solutions with the required exponential decay, namely 

g= l - q K o ( J ~ ~ ) ] ” ’  (3.44 

Near the origin (r+O), we want solutions with asymptotic behaviour a(r)+n and 
g(r)+O. If, for small r, we attempt a power series solution, we obtain 

U = I + [ ( p -  I)c:+ ;(I -2p)lS +of?) (3.54 

(3.5b) g = Clr+ [f(p- 1 ) ~ :  + t(l - 2 p ) ~ ,  ]r3 + o(r3) 
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1 2 3 4 

r 
Figore 1. nasafunctionofrforp=2andn=l,2.  

for n= 1. For n22,  we find 

a =n + $(I - 2p)S + (p- i)nC;P+ o(P) (3.64 

g=c"s+~(1-2p)c"s+~+o(s+~) .  (3.66) 

Higher-order terms can easily be calculated recursively. 
We have studied (3.2) numerically and have found solutions with the correct asymp- 

totic behaviour. This numerical result can be understood as follows. If we choose C.(n= 
1,2,3, . . .) too small, g(r)  will increase so slowly that n(r) becomes negative and g(r)  
starts decreasing instead of approaching the value 1. If we choose C, too large, g(r)  
will approach the value 1 fast, and the first term on the right-hand side of (3.2~) will 
dominate the second term and prevent a(r) from decreasing and approaching the value 
0. The value of C. separating the two regimes gives the solution we seek. We have 
plotted the functions a(r) and g(r)  in figures 1 and 2, respectively, for p = 2  and n= 
1,2. The corresponding values for C. we found are C, =0.95 and Cz=0.92. 

1 2 3 4 

r 
Figure2. gasafunctionofrforp=2andn=1,2. 
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4. Summary and conclusions 

We have presented a hierarchy of Abelian Higgs models on R1 labelled by an integer 
p .  The pth model of the hierarchy is that obtained from the GYM model on the 4p- 
dimensional manifold R2 x S"-' by dimensional reduction. The p = 1 member of this 
hierarchy is the usual Abelian Higgs model. 

Apart from defining the actions (1.7) for these models we have supplied the topologi- 
cal inequalities (2.2) which guarantee the stability of the vortex solutions, and we have 
in particular considered the self-dual solutions satisfying the Bogomol'nyi equations 
(2.3). Restricting to the radial solutions of winding number n, we have found approxi- 
mate solutions (3.4) -for r>>l and (3.5) for r<cI. The full solution has been found 
numerically for thep=2 model for the winding numbers n = , l  and n=2, and this serves 
as our demonstration for the existence of the solutions. 

We conclude that our hierarchy of generalized Abelian Higgs models is endowed 
with (self-dual) vortex solutions, whose qualitative properties are largelyp independent. 
From the physical point of view it may be of some interest whether vortices of different 
models in this hierarchy may have quantitatively different properties. To this end, we 
have drawn the curves for the function a(r) for the two models of the hierarchy labelled 

1 2 3 4 

r 
Figure3. n a s a f u n c t i o n o f r f o r p = I  and2, f o r n = l .  

byp= 1 and 2, each with winding number n =  1. This is given in figure 3, which exhibits 
the quantitative difference sought, namely that thep= 1 and 2 models result in vortices 
of different widths, notwithstanding the fact that the same scale-breaking dimensional 
parameter 17 features in both models. It is conceivable that this distinction may prove 
to be relevant to the physics of the vortices. 
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